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ABSTRACT 

Adobe Portable Document Format (PDF) documents are increasingly used as a vector for 

targeted attacks. Although there exist a number of tools and methodologies for 

performing content-level analysis to identify unwanted or malicious behavior or 

characteristics in these documents, these forms of analysis are hampered by increasingly 

complex obfuscation techniques and usually require execution of potentially malicious 

code. This thesis proposes a static analysis method that uses structural elements of PDF 

documents to identify the tools used to generate them. This method may be used to 

attribute malicious PDFs to particular toolkits. 
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I. INTRODUCTION 

A. INTRODUCTION 

The Adobe Portable Document Format is a widely-used format for online 

document interchange. Roughly 23.4 % of the 986,278 documents in the NPS Govdocs1 

corpus consists of PDF documents [1]. A wide variety of tools can, either as part of their 

core functionality or as an add-on, read or write PDF documents. It is the PDF format’s 

very ubiquity that has made it a tempting vehicle for targeting vulnerable applications. 

In 2012, Symantec reported that 11% of all targeted attacks involved exploits 

against PDF-rendering applications, a figure that does not include non-targeted, 

opportunistic attacks [2]. Figures from F-Secure for 2008–2010 indicate that anywhere 

from 28–61% of targeted attacks involved PDF exploits, with a steadily increasing trend 

[3], [4]. In the last quarter of 2012 alone, Microsoft reported more than a 100% increase 

in the number of detected attacks that used vulnerabilities in Adobe Reader and Adobe 

Acrobat to execute malicious Javascript payloads [5]. The mechanisms for the most 

common of these attacks are detailed in Chapter II, Section A. 

In order to better profile the authors behind these attacks, there is interest in 

identifying the tools that they are using to create their malicious PDF documents. If an 

attacker uses an uncommon or custom tool,  and that tool’s signature can be identified in 

a document, regardless of the particular content or possible exploitation mechanisms and 

payloads, it may be possible to more easily identify potentially-malicious documents or 

attribute documents to a common source. Analysis of in-band, PDF-specific metadata, 

such as the reported creating program, can be insightful, but metadata can also be deleted 

or modified with various tools [6].  

This thesis will attempt to identify a method for identifying the toolkits used by 

content authors to generate PDF documents. This will include benign documents. It will 

not attempt to identify signatures of particular exploits or malicious content, and will, to 

the greatest extent possible, avoid using signatures that are based on user-provided 
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content or easily-modified data, such as document-provided metadata. Additionally, any 

selected methods should be fast enough to support real-time analysis. 

B. ORGANIZATION OF THESIS 

This thesis is organized into five chapters. The first chapter introduces the topic of 

PDF document forensics. The second explains background information useful to 

understand the structure of PDF documents, as well as related prior work. The third 

chapter describes the experimental methodology for identifying and classifying these 

documents. The fourth discusses results from the identification and classification process 

and gives a conclusion for the thesis. Finally, the fifth chapter addresses possible 

directions for future development. 
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II. BACKGROUND 

A. PORTABLE DOCUMENT FORMAT 

The Adobe PDF standard was first released in 1993, coinciding with the release of 

Adobe Acrobat 1.0 [7], [8]. Each release of the standard has been backwards compatible 

with prior releases, allowing a PDF 1.5-compliant reader to open a PDF 1.5-, 1.4-, 1.3, 

1.2, 1.1, or 1.0-compliant file, and so on. Releases have added new supported features, 

such as encryption, embedded images, forms, or digital signatures. In 2008, the eighth 

release of the PDF standard, PDF 1.7, was codified as the ISO  standard ISO 32000–1 [9, 

10]. There are further specialized extensions to the standard, such as PDF/A [11], PDF/E, 

and PDF/X, which are intended for archival, engineering, and graphics interchange 

purposes, respectively. Adobe has continued to add features to the PDF format outside of 

the ISO standard, in the form of supplements [12].  

A canonical PDF documents is composed of four main sections, a header, the 

body, a cross-reference table, and a trailer (see Figure 1) [13], [14].  

Header 

Body 

Cross-reference table 

Trailer 

Figure 1.  The four major sections of a PDF document 

The header contains the version number of the PDF standard that the document 

uses, in the format “%PDF-<version_number>,” and is followed by a newline character 

(see Figure 2).  
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Figure 2.  An ASCII representation of the first 80 bytes of a sample PDF  
document, including the document header and the beginning of an  

indirect object and stream. 

The body of the file contains a sequence of objects that define the content and 

appearance of the document. There are two types of objects: direct objects and indirect 

objects. Direct objects are unlabeled primitives that cannot be referred to by other 

objects, and are similar to literal values present in other programming languages. Indirect 

objects are labeled in such a way that other objects can refer to them. Indirect objects 

appear in the file preceded by an object number, a generation number, and the keyword 

“obj,” and are terminated with the keyword “endobj” (see Figure 3). The object number 

and generation number are used to uniquely identify objects. Generation numbers identify 

the version of an object, and initially start at 0, growing as large as 65,535 as an object is 

updated or reused. This functionality is intended to allow a program to deallocate an 

object’s memory space, and then place new content in its place, to avoid having to 

rewrite an entire file for small updates. 

 

Figure 3.  A sample PDF indirect object, object 1, generation 0, of the type “Pages,”  
which includes a field, “Kids,” with an indirect reference to generation 0 of  

object 6, and a field, “Count,” equal to 1. 

Indirect objects may contain embedded direct objects, such as strings, streams of 

arbitrary binary data, and numeric values, or references to other indirect objects. These 

objects may contain dictionaries of fields that describe aspects of the object, such as its 

type, hierarchical relationships to other objects, font definitions, or displayed contents. A 
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record of recognized object types is maintained by Adobe, and new types must be 

registered through them. 

Data stored in streams may be encoded or encrypted through the use of filters. 

Filters support a variety of transformations, such as mapping binary data to a 

hexadecimal representation, or a number of compression schemes. Additionally, content 

may be encoded using any of several encryption algorithms, such as RC4, DES, 3DES, or 

AES. The format also supports PKI mechanisms to protect or authenticate content. These 

filter mechanisms only apply to complex content and not to primitive numbers, Boolean 

values, or entire objects, except for objects that appear in object streams. Object streams 

are a type of stream, introduced in PDF 1.5, which allows for objects to be grouped 

together, with the goal of allowing more efficient compression of large numbers of 

objects. 

The cross-reference table allows PDF parsers to quickly locate indirect objects 

within a document. It begins with the keyword “xref” and can contain multiple 

subsections, each beginning with a line containing the number of the first object and the 

number of objects in the subsection. Each following line, one per object in the subsection, 

includes a 10-digit byte offset into the file, a five-digit generation number, and either the 

character ‘f’ or ‘n’, indicating whether the object defined on that line is either free or in 

use, respectively. The space occupied by free objects may be reused when new content is 

added to a document, instead of appending the new object to the end of the document. 

The first object in the cross-reference table is always free and has the largest possible 

generation number, 65,535 (see Figure 4). Further cross-reference tables can be defined 

as indirect objects, with the type “XRef.” 
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Figure 4.  A sample PDF cross-reference table, with one subsection and 15 items 

The final section of a PDF document is the trailer. This section begins with the 

keyword “trailer,” immediately followed by a dictionary containing information about 

how to start constructing the document. Required keys include the size of the cross-

reference table and the root of the document’s catalog. Following the “startxref” keyword 

is the byte offset into the file of the cross-reference table. The final line contains the 

keyword “%%EOF” (see Figure 5).  

 

Figure 5.  A sample PDF trailer section 

It is possible for a document to contain multiple trailers and cross-reference 

tables. In this case, the trailer dictionary will contain a key, “Prev,” which points to the 

offset of the previous cross-reference tables. This usually happens when an application 
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makes incremental updates to a document, allowing it to add material without altering 

earlier content, by chaining together cross-reference and trailer sections. 

The PDF specification does not specify the order in which indirect objects should 

appear in a document, physically or logically, with the exception of Linearized” PDFs. 

These are documents whose internal representation has been ordered in such a way that a 

reader may begin to render the document before it has been fully parsed or loaded, 

typically by including objects with content that appears earlier in the document closer to 

the beginning of the file. Additionally, these documents contain “hint tables,” which 

provide a reader application with information about where objects exist within the file, 

before reading a cross-reference table, allowing the reader to locate objects that may have 

already been loaded or request out-of-order portions of the document from the backing 

storage device. The only ordering requirement for Linearized PDFs is that an object 

containing a linearization parameter dictionary must appear in the first 1024 bytes of the 

document. This dictionary object contains  basic information about the document, such as 

the location of the hint tables and number of pages, and serves as an indicator to reader 

applications that they are opening a Linearized PDF without having to process more than 

the first 1024 bytes. 

The elements of PDF documents described in this section are taken from the most 

current PDF specification. However, many readers, including Adobe’s products, will 

accept documents as valid that do not conform to the specification. For example, some 

readers will accept documents which entirely omit the cross-reference section in lieu of 

cross-reference objects, or which contain no trailer section, both of which are described 

as elements of a canonical PDF document. The PDF specification indicates that the 

keyword “%%EOF” must be the final element on a valid document, but, in an appendix 

to the PDF 1.7 specification, Adobe indicates that their products will validate a document 

if the keyword appears anywhere in the final 1024 bytes. As a result of these 

acknowledged inaccuracies in the specification’s implementations, the validity of a PDF 

document is perhaps not best described in terms of how well it adheres to the 

specification, but in whether or not Adobe Reader will open it. 
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Logically, the root of a PDF document is the document catalog. The document 

catalog is an indirect object containing rendering information such as dictionaries of 

pages, supported extensions, forms, layout information, metadata, tables of contents, and 

actions that are performed when a document is opened. The extensions dictionary is the 

vehicle by which non-ISO updates are supported to add new features. 

Most attacks involving a maliciously-crafted PDF document leverage flaws in a 

reader application’s implementation of specific content handlers. For example, an 

attacker may embed a JPEG or TIFF image that exploits a vulnerability in the handler for 

those image types. Since PDF 1.3, Javascript may be embedded in PDF documents, and 

many reader applications, including Adobe’s Acrobat line of products, include an 

embedded Javascript engine [13], [15]. The inclusion of Javascript not only provides an 

additional attack surface for adversaries, but also a rich API for interacting with the 

system, beyond what is normally possible for a PDF document. A document may specify 

actions that are to take place automatically when it is opened, or upon certain user 

actions, such as clicking a button or entering text into a form. These actions may include 

the execution of Javascript or system commands. Some applications notify users of these 

actions, or require confirmation, but this is often poorly implemented, and it may be 

possible to use social engineering to convince users to permit these behaviors [16]. 

B. RELATED WORK 

There is little work dedicated to non-content-based analysis of PDF documents, 

but there are a number of tools and methodologies intended to perform content-level 

analysis. Smutz and Stavrou developed a means to identify malicious content in PDF 

documents through structural analysis [17]. Additionally, they were able to further 

classify attacks involving these documents as either broadly-distributed opportunistic 

attacks, or targeted attacks. However, their approach is intended to identify malicious 

behaviors and signatures, and not to identify or classify toolkits used to create the 

documents. 

There is a large body of work on authorship identification in documents, but most 

of the work focuses on analyzing human languages in plain-text documents, which is not 
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particularly well-suited to the binary content in PDF documents. Frantzeskou et al. 

developed an approach, called SCAP, which uses binary n-gram analysis to identify 

human authors of compiled programs written in a variety of programming languages 

[18]. However, this approach is highly dependent on the programming language being 

profiled, and it is unknown how effective it may be against the PDF specification 

language, or how it may interact with embedded content, such as images, which may 

appear in a PDF document. Additionally, we were not certain if these approaches could 

be desensitized enough to provide coarse enough results, which would be resistant to 

changes caused by human-provided input and content.  

More closely related is work by Rosenblum et al., related to analyzing compiled 

programs to identify their compilers [19]. Their approach identifies idiomatic instruction 

sequences particular to each compiler and uses the sequences to fingerprint the compiler. 

However, their methodology depends on disassembling binaries from arbitrary byte-

offsets, and it is unclear if it could be adapted to work with similar analysis of PDF files. 

Most PDF tools are intended to process or manipulate the content of a document, 

and only a few tools exist that are intended to inspect the structure of PDF documents. 

Pyew is a Python-based tool for statically analyzing a variety of file formats, including 

PDFs [20]. Although Pyew does offer some support for structural analysis, it is best 

suited for extracting and analyzing content from PDF objects. Jose Esparza’s Peepdf tool 

also offers similar capabilities for PDF documents, and can generate a representation of 

the logical structure of a document [21]. Oragami-pdf offers similar features, in addition 

to content modification capabilities [22]. However, both Peepdf and Oragami-pdf are 

limited to inspecting the logical structure of a document, and not the actual ordering of 

structural elements as they appear in the raw file Didier Stevens has produced a number 

of tools intended for analyzing PDF documents, as well as documentation on analysis and 

obfuscation techniques, largely with a focus on identifying potentially malicious 

documents [23], [24], [25]. 
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III. DESIGN AND METHODOLOGY 

A. ENVIRONMENT 

Our experiments were conducted in a VMWare virtual machine running 32-bit 

Fedora 16 with one GB of RAM, running on a host with four GB of RAM and a 1.66Ghz 

Intel Atom processor.  

B. METHODOLOGY 

1. Document Generation 

We generated 57 documents using nine tools (see Table 1) with a variety of 

settings and inputs to serve as a training set, against which to build and test signatures.  

Authoring Tool Operating System 
AbiWord 2.8.6 [26] Fedora 16 
Adobe Acrobat XI Professional [27] Windows 8 
FreePDFConvert.com [28] Web-based 
LibreOffice 3.4  340m1(Build:602) [29] Windows 8 
Microsoft Office 2007 SP3 [30] Windows 8 
Neevia [31] Web-based 
Nitro Pro 8 [32] Windows 8 
PDFOnline [33] Web-based 
WordPerfect X6 [34] Windows 8 

 

Table 1.   Software used to generate sample PDF documents 

The documents were generated with one page of text, two pages of text, or 

embedded images. We created this content natively with some tools, but other tools 

converted a pre-existing document into a new PDF document (see Table 2). In the case of 

native functionality, we typed content or inserted images directly into the tool, then saved 

the document as a PDF file. When using a tool to convert a DOCX [35] file into a PDF, 

we created an intermediate DOCX file using Microsoft Office 2007. When a tool 

supported importing a PDF document, the PDF generated by Microsoft Office was used 

as input. One of the evaluated tools, Nitro Pro 8, supported plaintext ASCII files as input.  
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Authoring Tool Content Generation 
Methods 

AbiWord  Native (text only) 
Adobe Acrobat Native, import from PDF 
FreePDFConvert.com  Import from DOCX 
LibreOffice  Native 
Microsoft Office 2007 Native 
Neevia  Import from DOCX 
Nitro Pro 8  Native, import from DOCX, 

import from ASCII plaintext 
PDFOnline  Import from DOCX 
WordPerfect X6  Native, import from PDF 

 

Table 2.   Software content generation options used 

Several tools included additional output options, beyond their default settings. We 

tested several of these output options (see Table 3). The most common among these 

include “optimized” or “minimum” formats, referred to in the Adobe PDF Reference as 

Linearized PDF. The next common output option was to create PDF/A-compatible 

documents. PDF/A documents use a subset of the features in normal PDF documents, and 

must embed all resources, such as fonts, into the document, that might normally be 

expected to be provided by the host system. Finally, Adobe PDFMaker [36] is a generic 

printer driver plugin that allows software without native PDF-generation capabilities to 

produce PDF documents through their print functionality. It is installed as a part of the 

Adobe Acrobat XI Professional suite. 

Authoring Tool Output Formats 
AbiWord  Default 
Adobe Acrobat Default, Optimized, PDF/A 
FreePDFConvert.com  Default 
LibreOffice  Default, PDF/A 
Microsoft Office 2007 Default, Minimum, PDFMaker 
Neevia  Default 
Nitro Pro 8  Default 
PDFOnline  Default 
WordPerfect X6  Default 

 

Table 3.   Software output methods and options used 
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Additionally, we downloaded 5267 PDF documents from the Govdocs1 corpus 

[37] to serve as real-world examples. These documents were used to test structural 

signature generation performance on a larger and more complex set of documents than 

the ones that we generated for training purposes.  

2. Structural Signature Generation 

We developed two methods for generating structural signatures for PDF 

documents. Both methods generate a series of tokens, representing an ordering of the 

types of all of the indirect objects within a document. For convenience, we represent this 

series as a comma-delimited list (see Figure 6). The tools for both methods produce a list, 

in this format, as output, which is later used as input for our classification tools. For 

development purposes, these structural signatures are created once and saved separately 

from the original document, so that, while testing classification tools and methodologies, 

the signature did not need to be regenerated each time. 

  

Figure 6.  A sample PDF structural signature 

The first method leverages Didier Stevens pdf-parser.py tool [23] to parse a PDF 

document and identify indirect objects. Pdf-parser.py accepts a PDF document as input 

and produces a listing of object information or document statistics, or extracts the 

contents of objects. We process the object listing of a document to generate an ordered 

set of object types, as they appear in the file. We refer to this method later in this 

document as Method #1. Code for this method is located in Section A of the Appendix. 

The second method scans the raw content of a PDF document with a regular 

expression to identify instances of the keyword “Type,” and extracts the object type 

following the keyword, using a Python program. We refer to this method later in this 

document as Method #2. Code for this method is located in Section B of the Appendix. 
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Timing information for both methods was obtained by using the total execution 

time from the Linux “time” command while generating signatures for our simple 

generated files, the entirety of our sample from the NPS Govdocs1 corpus [37], and a 

smaller subset of 969 documents from the NPS corpus. This subset was chosen by 

grouping documents from the larger sample by their metadata-indicated creator, and 

selecting the largest group. 

3. Developing Structural Signature Classifiers 

a. Regular Expressions 

By comparing the structural signatures of our training documents, grouped 

by the tools that were used to create them, we visually identified unique patterns or 

positions of elements common only to that tool. These patterns were represented as 

regular expressions. As additional classifiers were built, it became necessary to refine 

some regular expressions in order to prevent false positives. Some tools required multiple 

regular expressions in order to capture the signatures of their output. 

b. N-gram Analysis 

Word n-grams of various sizes were extracted from the structural 

signatures, and used to build a simple profile for each of the authoring tools. N-grams are 

sequences of tokens, in this case, of structural elements, of arbitrary length, n. To build a 

profile, we calculated the probability of a given n-gram appearing in all of the n-grams 

associated with one tool (see Table 4). This was repeated for all n-gram lengths less than 

or equal to the length of the longest signature in our dataset.  
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N‐gram  Score

StructTreeRoot‐Pages  0.076923

StructElem‐StructElem  0.153846

Pages‐Catalog  0.115385

Page‐Page  0.076923

FontDescriptor‐Font  0.115385

Metadata‐StructElem  0.076923

Page‐OutputIntent  0.076923

Page‐Pages  0.038462

OutputIntent‐Metadata  0.076923

StructElem‐StructTreeRoot  0.076923

Font‐Page  0.115385

Table 4.   Sample n-gram scores for documents generated with  
LibreOffice, with n-grams of size two 

4. Classifying Document Structures 

a. Regular Expressions 

After creating regular expressions for each tool, we could test their ability 

to accurately classify documents that were created by the tools. Our script, 

classifyStructure.py (see Section C of the Appendix), accepted a comma-delimited list of 

structural elements as input, as generated by our signature-generation tools, then tested 

the input against each regular expression. If a regular expression matched the input, we 

output the respective matching program as a possible match. For the best possible 

accuracy, we allowed the possibility of multiple matching programs. 

b. N-gram Analysis 

Given an unknown sample, we extracted n-grams of the same size as those 

used to generate the profiles. For each extracted n-gram that matched an n-gram in our 

profiles, we added the score for each associated tool to a running total for each tool. After 

examining all n-grams in the sample, we returned the highest-scoring program as  

the most likely tool to have created the unknown sample (see Tables 5 and 6. Five-fold 

cross-validation was performed to estimate the accuracy of the classifier for several sizes 

of n-grams. 
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adobe  0.105882

nitro  0.071429

wordperfect 0.142857

pdfonline  0.238095

Table 5.   Sample programs scores for the n-gram “Catalog,Page” 

Program  N‐gram  Total Score 

Page 
FontDescriptor

FontDescriptor
Font 

Font 
Font 

Font 
Pages

Pages 
Catalog    

Abiword  0.200 0.200 0.200 0.200 0.200  1.000

PDFOnline     0.095          0.095

LibreOffice     0.115       0.115  0.231

Nitro        0.095       0.095

Neevia              0.152  0.152

FreePDFConvert              0.029  0.029

Table 6.   Sample classification scores for the sample document in Figure 6.   
using n-grams of size two, indicating that the tool most likely used to  

create the document was Abiword. 
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IV. RESULTS AND CONCLUSIONS 

A. RESULTS 

1. Signature Generation 

Both signature generation methods had advantages and disadvantages. The first 

method took more time to generate a signature, up to tens of seconds, on average (see 

Tables 7 and 8), but generated more reliable output that is more closely indicative of what 

a PDF reader program will actually recognize as indirect Type tokens. The second 

method was significantly faster, but may generate incorrect signatures if the keyword 

“Type” appears in a context where it does not indicate an indirect object’s type, or if it 

exists in an invalid object that is not referenced by a cross-reference table. Additionally, 

some embedded direct objects contained type definitions, but these objects were not 

extracted by the first method. In our training set, these variations appeared regular and 

predictable, so we were able to make small changes to our regular expression-based 

identifying fingerprints to account for the differences with no loss in accuracy.  

 

Number of files Generation Method  Total Time Average time (per file) 
58    
 Parsing (method #1) 1m 14.877s 1.291s 
 Raw (method #2) 0m   0.411s 0.007s 

Table 7.   Time to extract structural signatures for training documents 

Number of files Generation Method  Total Time Average time (per file) 
5267    
 Parsing (method #1) Approx. 3 days  
 Raw (method #2) 3m 21.547s 0.038s 
969    
 Parsing (method #1) 301m25.740s 18.664s 
 Raw (method #2) 0m59.363s 0.061 

Table 8.   Time to extract structural signatures for selected NPS Govdocs1 documents 
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Documents that were created with identical input to different tools produced 

different structural signatures. For example, the documents whose structure is represented 

in Figures 7, 8, 9, and 10.  are visually similar when opened with a PDF reader. The 

structures represented in Figure 7 and Figure 10 were generated from the same document, 

but with method #1 and method #2, respectively. 

 

Figure 7.  A structural signature, generated with method #1, for a sample  
document created with Adobe Acrobat 

 

Figure 8.  A structural signature, generated with method #1, for a sample  
document created with Microsoft Word and saved using Adobe PDFMaker 

 

Figure 9.  A structural signature, generated with method #1, for a sample  
document created with Nitro8 

 

Figure 10.  A structural signature, generated with method #2, for a sample  
document created with Adobe Acrobat 

2. Document Classification 

a. Regular Expressions 

We were able to create regular expressions to classify each of our training 

documents by the tool that created them. One to three object labels was sufficient to 

identify each of our training files with no false positives or negatives. In most cases, a 

single regular expression was sufficient to identify all documents associated with a 

particular tool. Documents created by Nitro Pro 8 carried one of two possible identifying 

signatures, depending on whether they were created natively within the program, or 

imported from another file (see Table 9).  
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Program Name Regular Expression 
AbiWord 2.8.6 ^Page,.*Catalog$ 

Adobe Acrobat XI 
Professional 

^XRef 

FreePDFConvert.com ^Catalog,Pages,.+Metadata$ 

LibreOffice 3.4  
340m1(Build:602) 

^FontDescriptor,.*Catalog$ 

Microsoft Office 2007 
SP3 

^Catalog,.*XRef$ 

Neevia ^Page,.*Catalog,Metadata$ 

Nitro Pro 8 (native) ^Catalog,.*XObject,.*(?:Outlines|XObject)$

Nitro Pro 8 (converter) ^Metadata,.*Pages$ 

PDFOnline Page,Pages(?:$|,FontDescriptor) 

WordPerfect X6 ^Catalog,.+Pages,Metadata$ 

 

Table 9.   Regular expressions used for classifying fingerprints  
generated with method #1 

Some identifying fingerprints were easy to develop, but others required 

refactoring, as new samples were added, to avoid false classifications. For example, the 

first indirect object in documents generated by Adobe tools, including both Adobe 

Acrobat and PDFMaker, is always a cross-reference table object, or XRef. A simple 

regular expression, identifying a single XRef object at the beginning of a document’s 

structure, was sufficient to identify all Adobe-generated documents, and never falsely 

classified a document that was created by another tool.  

b. N-gram Analysis 

Our n-gram classification process yielded encouraging results against our 

training data for a variety of n-gram sizes. Profiles generated with signatures created with 

method #2 resulted in slightly higher classification accuracy than method #1 when trained 

and exercised against our entire training set (see Tables 10 and 11, and Figure 11). The 
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accuracy of both methods peaked at around 92% for n-gram sizes of between two and 

four elements. Even with an n-gram size of one, accuracy was better than 50%, although 

this may have been an artificiality introduced by our small documents and selection size . 

The reduction of accuracy at higher n-gram sizes was likely due to the limited size of our 

sample documents. For example, no 12-grams exist in a document with only 11 structural 

elements, so we would be unable to train against or classify documents with 11 or fewer 

structural elements. 

 

n Number of correctly-
classified samples 

Classification 
Accuracy 

1 29 0.518 
2 51 0.911 
3 52 0.928 
4 53 0.946 
5 50 0.892 
6 48 0.857 
7 42 0.750 
8 34 0.607 
9 22 0.393 
10 12 0.214 
11 7 0.125 
12 6 0.107 
13 5 0.089 
14 3 0.054 
15 0 0 

 

Table 10.   N-gram classification results against 56 training documents with  
n-grams of size n and signature generation method #1 
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n Number of correctly-
classified samples 

Classification 
Accuracy 

1 34 0.607 
2 52 0.928 
3 52 0.928 
4 52 0.928 
5 48 0.857 
6 48 0.857 
7 46 0.821 
8 39 0.696 
9 32 0.571 
10 23 0.411 
11 13 0.232 
12 8 0.143 
13 7 0.125 
14 5 0.089 
15 2 0.036 
16 0 0 

 

Table 11.   N-gram classification results against 56 training documents with n-grams  
of size n and signature generation method #2 

 

Figure 11.  Graph representing n-gram classification accuracy against 56 training documents 
for n-gram sizes one through 16 and signature generation methods #1 and #2 
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Five-fold cross-validation yielded similar results (see Figure 12). The long 

tail is likely due to three documents, which each contained the same 14 indirect object 

sequences. Because of the limited number of training documents that were created with 

some tools, some training sets did not contain documents created by all possible tools, 

resulting in lower accuracy. 

 

Figure 12.  Graph representing n-gram classification accuracy in five-fold cross- 
validation, per-set, for n-gram sizes one through 16 and signature  

generation method #1 

Using n-grams of size four, further analysis was conducted using five-fold 

cross-validation to obtain more specific accuracy information for each program (see 

Tables 12 and 13). The only program that seemed to be classified differently as a result of 

using different signature generation methods was LibreOffice. It is also interesting to 

note that the classification accuracy did not seem to be directly correlated with the 

number of training samples. For example, both AbiWord and Adobe had similar 

classification accuracies, even though our training corpus only had two samples from 

AbiWord, and 14 from Adobe tools. In cross-validation with training partitions that only 

contained one AbiWord-generated document, we were still able to identify another 

AbiWord-generated document.  
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Software Name  False‐positive  False‐negative  True‐positive  True‐negative 

AbiWord  0.000 0.000 1.000  1.000

Adobe  0.000 0.000 1.000  1.000

FreePDFConvert  0.000 0.600 0.400  1.000

LibreOffice  0.000 0.300 0.700  1.000

Microsoft Office 2007  0.062 0.000 1.000  0.938

Neevia  0.020 0.000 1.000  0.980

Nitro  0.000 0.100 0.900  0.800

PDFOnline  0.000 0.300 0.700  1.000

WordPerfect  0.000 0.000 1.000  1.000

Table 12.   Per-program n-gram classification accuracy for n-grams of size four and  
signature generation method #1 

Software Name  False‐positive  False‐negative  True‐positive  True‐negative 

AbiWord  0.000 0.000 1.000  1.000

Adobe  0.000 0.000 1.000  1.000

FreePDFConvert  0.000 0.600 0.400  1.000

LibreOffice  0.000 0.000 1.000  1.000

Microsoft Office 2007  0.062 0.000 1.000  0.938

Neevia  0.020 0.000 1.000  0.980

Nitro  0.000 0.100 0.900  0.800

PDFOnline  0.000 0.300 0.700  1.000

WordPerfect  0.000 0.000 1.000  1.000

Table 13.   Per-program n-gram classification accuracy for n-grams of size four and  
signature generation method #2 

B. CONCLUSIONS 

Our results indicate that PDF document structure may be a reliable means for 

identifying the tool that was used to create a document. Structural fingerprints are harder 

to forge than metadata or content-specific signatures, and would require reordering a 

document’s objects to obfuscate or obscure. Most of the tools that we used to generate 

our training corpus create unique fingerprints that are identifiable in documents 

containing diverse content types. The signature-generation process can be easily scalable 

to support near-real-time analysis.  
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V. FUTURE WORK 

We were able to build reliable identifying fingerprints for a small number of tools 

and content types using documents that we generated (see Table 1). However, given the 

limited sample size and the simplicity of the generated documents, this is not especially 

surprising or useful. It remains unclear if these approaches can scale to the larger sample 

sizes and more complicated documents in such a way that is suitable for real-time 

classification. When we tested our fingerprints against samples from the NPS Govdocs1 

corpus [37], many of our classification results did not match what document metadata 

indicated. It is possible that these documents had incorrect or misleading metadata, or 

that our fingerprints could not be generalized to this collection, but, without information 

about the tools that actually created the documents, we cannot make claims about these 

hypotheses. Additionally, our ability to make strong claims about the effectiveness of our 

methods was limited by small sample sizes for each tool. We leave it to future work to 

build similar fingerprints for other tools and more complex documents.  

Of particular interest are documents that are generated by tools that may provide 

more precise control to users over how a document’s structure is constructed. We did not 

test documents that were generated by tools such as LaTeX or compiled from DVI or 

PostScript. It may be possible for an adversary to evade or forge structural signatures, 

such as the ones explored in this thesis, if the compiler does not leave a signature that is 

distinguishable from user-provided content.  

All of the regular expression-based identifying fingerprints were built by hand 

after visually inspecting the structural signature of each sample documents. This 

approach would likely not scale well in real-world use, as it requires human interaction to 

analyze the structures of each of the training documents in order to identify unique 

patterns and is difficult to convert into a reliably repeatable process..  

Our n-gram-based approach yielded encouraging results against our training data, 

but it is unsure how well the approach scales to larger and more complicated documents. 

The training documents were simple, with no more than 14 indirect objects each. 
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Additionally, we did not take into account the positions of each n-gram within the greater 

structure, which may serve as a more reliable indicator in future work.  

It would also be of interest to examine how resistant both the regular-expression 

and n-gram analysis classification methods are to malicious or targeted subversion of an 

analyzed document’s structure. If a human is able to craft content in a tool which results 

in a radically different signature than other documents which were created by the same 

tool, it may be challenging to accurately classify a document.  

There is room for future work in examining the structure of incrementally-

modified PDF documents. When we used tools which were able to open and modify 

existing PDF documents, the new documents bore the signature of the most recent tool 

that was used to modify the file. However, it is possible for an incrementally-modified 

PDF document to be modified and contain signatures for multiple tools. When examining 

the Govdocs1 corpus, we found very few examples of documents that appeared to have 

been modified in this way, with chained trailers and cross-reference tables, but were 

unable to determine which tools were used to create them. 

We briefly investigated the idea of combining metadata analysis and idiomatic 

artifact identification with our other approaches to identify suspicious or potentially-

subverted documents. If a document’s metadata indicates that it was created with one 

tool, but the structural signature indicates another, it is possible that an author has 

modified their document beyond what the original tool generated.  

During the process of this research, we discovered a lack of large collections of 

PDF documents with known provenance. Although there are resources, such as the NPS 

Govdocs1 corpus, for large numbers of documents found in the wild, we were unable to 

leverage these documents for reliable training purposes because we were unable to verify 

which tools created them without blindly trusting the documents’ metadata. There are, 

occasionally, small collections of documents, associated with a single tool, which are 

intended to demonstrate that tool’s capabilities. It is essential to future work that large 

bodies of PDF documents, from a wide variety of tools, with a variety of content types, 

and of known provenance are available. This corpus should include documents which 
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utilize the full range of capabilities of the PDF specification, such as encryption, forms, 

and  scripted actions, as well as readily comparable documents which were created from 

identical inputs and have similar appearance. Additionally, tools with different modes of 

operation, such as ones which allow native content creation, as well as conversion 

between formats, should be fully explored. 
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APPENDIX 

A. SCRIPT USED TO GENERATE METHOD #1 SIGNATURES 
(GETSTRUCTURE.SH) 

#!/bin/bash 
# File: getStructure.sh 
# Structural signature generation method #1 
# Uses Didier Stevens’ pdf-parser to extract object names 
./bin/pdf-parser.py “$1” | grep -a -A 1 “obj” | sed -rn 
“s/\s*Type:\s*\/(\S+)/\1/p” 
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B. SCRIPT USED TO GENERATE METHOD #2 SIGNATURES 
(GETSTRUCTURE.PY) 

#!/usr/bin/python 
 
# File: getStructure.py 
# Structural signature generation method #2 
# Extracts “Type” values from the input file(s) 
# Written by John Donaldson 
 
import re 
import mmap 
import sys 
 
typere = re.compile(“Type\s*\/(\w+)”) 
 
def getStructure(filename): 
    structure = [] 
    with open(filename, “rb”) as fileHandle: 
        data = mmap.mmap(fileHandle.fileno(),0,prot=mmap.PROT_READ) 
        for result in typere.finditer(data): 
            structure.append(result.group(1)) 
 
    return ,.”“join(structure) 
 
if __name__ == “__main__”: 
    for filename in sys.argv[1:]: 
        print(getStructure(filename)) 
 

C. SCRIPT USED TO CLASSIFY STRUCTURAL SIGNATURES WITH 
REGULAR EXPRESSIONS (CLASSIFYSTRUCTURE.PY) 

#!/usr/bin/python 
 
# File: classifyStructure.py 
# Classifies a PDF document by its structure, using provided fingerprints 
 
import sys 
from StructureFingerprints import fingerprints 
import getStructure 
 
def classify(structure): 
    structure = ,.”“join(structure) 
    structure = structure.strip() 
    guesses = [] 



 31

    for fingerprint, name in fingerprints.iteritems(): 
        if fingerprint.search(structure) != None: 
            if name not in guesses: 
                guesses.append(name) 
 
    if len(guesses) == 0: 
        print(“Couldn’t classify”) 
    elif len(guesses) == 1: 
        print(guesses[0]) 
    else: 
        print(“-------------Multiple possibilities-----------------”) 
        for guess in guesses: 
            print(guess) 
 
def classifyFile(filename): 
    return classify(getStructure.getStructure(filename)) 
 
 
if __name__ == “__main__”: 
    if (len(sys.argv) > 1): 
        for filename in sys.argv[1:]: 
            classify(map(lambda x: x.strip().lower(), open(sys.argv[1]).readlines())) 
    else: 
        classify(map(lambda x: x.strip().lower(), sys.stdin.readlines())) 
 

D. STRUCTUREFINGERPRINTS.PY 

import re 
 
# File: StructureFingerprints.py 
# Contains fingerprints for identifying PDF document creators 
# Fingerprints are only for method #1 
 
reFlags = re.I 
 
fingerprintsBase = { 
 
    “^Catalog,.*xref$”:”Microsoft Office 2007+,” 
    “^FontDescriptor,.*Catalog$”:”LibreOffice,” 
    “^Page,.*Catalog$”:”AbiWord,” 
    “^xref”:”Adobe,” 
    “^Page,.*Catalog,Metadata$”:”Neevia,” 
    “^Catalog,.+Pages,Metadata$”:”WordPerfect X6,” 
    “^Catalog,Pages,.+Metadata$”:”FreePDFConvert.com,” 
    “^Metadata,.*Pages$”:”Nitro8-convert,” 
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    “^Catalog,.*XObject,.*(?:Outlines|XObject)$”:”Nitro8-native,” 
    “Page,Pages(?:$|,FontDescriptor)”:”PDFOnline,” 
} 
 
fingerprints = {} 
 
for fingerprint, name in fingerprintsBase.iteritems(): 
    fingerprints[re.compile(fingerprint,reFlags)] = name 

 

E. N-GRAM ANALYSIS AND CLASSIFICATION PROGRAM 
(NGRAMCLASSIFY.PY) 

#!/usr/bin/python 
 
from nltk.tokenize import word_tokenize 
from nltk.util import ngrams 
import os 
import os.path 
 
trained = False 
trainedData = {} 
 
 
def getFileTokens(filename): 
 tokens = [] 
 with open(filename,”r”) as infile: 
  tokens = word_tokenize(infile.read().replace(,,”““\n”)) 
 return tokens 
 
def getFileNgrams(filename, ngramSize): 
 return(ngrams(getFileTokens(filename),int(ngramSize))) 
 
# Walk through a path, extracting n-grams from files and associating  
# them with the directory that contains them. E.g., the file  
# ./my_docs/foo/bar.struct would be associated with the program “foo” 
def loadProgramNgrams(ngramSize,basepath=.”/,”normalize=True): 
 programNgrams = {} 
 for root, dirs, files in os.walk(basepath): 
  program = os.path.basename(root) 
  if  program != ‘‘ and program not in programNgrams: 
   programNgrams[program] = {} 
   for filename in files: 
    filepath = os.path.join(root,filename) 
    currNgrams = getFileNgrams(filepath,ngramSize) 
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    for ngram in currNgrams: 
     if ngram in programNgrams[program]: 
      programNgrams[program][ngram] += 1 
     else: 
      programNgrams[program][ngram] = 1 
 
  # Normalize 
  if program != ‘‘ and normalize: 
   totalNgrams = 0 
   for ngram,count in programNgrams[program].iteritems(): 
    totalNgrams += count 
 
   for ngram in programNgrams[program]: 
    programNgrams[program][ngram] = 
programNgrams[program][ngram]/float(totalNgrams) 
 
 
 return programNgrams 
 
 
def printNgrams(ngramSize,basepath=.”/”): 
 ngramCounts = loadProgramNgrams(ngramSize,basepath) 
 for program,ngrams in ngramCounts.iteritems(): 
  print(“{0}:.”format(program)) 
  for ngram,count in ngrams.iteritems(): 
   print(“\t{0} -- {1}.”format(ngram,count)) 
 
def getTrainingData(ngramSize,basepath=.”/”): 
 global trained 
 global trainedData 
 
 # If we have already trained, just return the cached results 
 if trained: 
  return trainedData 
 
 programNgrams = loadProgramNgrams(ngramSize,basepath,normalize=True) 
 ngramProgramScores = {} 
 for program, ngrams in programNgrams.iteritems(): 
  for ngram,score in ngrams.iteritems(): 
   if ngram not in ngramProgramScores: 
    ngramProgramScores[ngram] = [] 
 
   ngramProgramScores[ngram].append((program,score)) 
 
 trainedData = ngramProgramScores 
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 trained = True 
 
 return ngramProgramScores 
 
def  printNgramProgramAssociations(ngramSize,basepath=.”/”): 
 ngramProgramScores = getTrainingData(ngramSize,basepath) 
 for ngram,programs in ngramProgramScores.iteritems(): 
  print(“{0}:.”format(ngram)) 
  for program,score in programs: 
   print(“\t{0} -- {1}.”format(program,score)) 
 
def getScores(ngramSize,unknownSample,basepath=.”/”): 
 ngramProgramScores = getTrainingData(ngramSize,basepath) 
 unknownNgrams = getFileNgrams(unknownSample,ngramSize) 
 programScores = {} 
 
 for ngram in unknownNgrams: 
  if ngram in ngramProgramScores: 
   for possibleProgram,score in ngramProgramScores[ngram]: 
    if possibleProgram not in programScores: 
     programScores[possibleProgram] = 0 
    programScores[possibleProgram] += score 
 
 # Normalize scores back down to between 0 and 1. These aren’t percentages,  
 # but give us a nicer range of numbers to work with. 
 totalScore = 0.0 
 for score in programScores.values(): 
  totalScore += score 
 
 for program in programScores: 
  programScores[program] /= totalScore 
     
 return programScores 
 
def classify(ngramSize,unknownSample,basepath=.”/”): 
 scores = getScores(ngramSize,unknownSample,basepath) 
 mostLikely = ““ 
 topScore = 0 
 # This information is interesting if we care about how close the next-best result is 
 secondScore = 0 
 secondLikely = ““ 
 
 for program, score in scores.iteritems(): 
  if score > topScore: 
   secondScore = topScore 
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   secondLikely = mostLikely 
   topScore = score 
   mostLikely = program 
 
 if topScore == 0: 
  mostLikely = “Unknown” 
  topScore = 1.0 
 return mostLikely 
 
# Check to see if a sample, whose provenance we know, is correctly  
# classified. Returns True if it matches, False if we classified incorrectly 
def validate(ngramSize,unknownSample,basepath): 
 expected = os.path.basename(os.path.dirname(unknownSample)) 
 result = classify(ngramSize,unknownSample,basepath) 
 print(“Expected {}, got {}.”format(expected,result))  
 if expected == result: 
  return True 
 else: 
  return False 
 
 
if __name__ == “__main__”: 
 import sys 
 if len(sys.argv) > 2: 
  ngramSize = sys.argv[1] 
  trainingLocation = sys.argv[2] 
  files = sys.argv[3:] 
  for filename in files: 
   result = classify(ngramSize,filename,trainingLocation) 
   print(“{:50}: {}.”format(os.path.basename(filename),result)) 
 else: 
  print(“Usage: {} <ngram size> <path to training data> <files to classify 
...>.”format(sys.argv[0])) 
  print(“\tMultiple files may be classified at once”) 
  print(“\tTraining data is expected to be in the following format, under the 
provided path:”) 
  print(“\tProvided path \\”) 
  print(“\t\tname_of_program1 \\”) 
  print(“\t\t\tstruct_file_from_program1_1”) 
  print(“\t\t\tstruct_file_from_program1_2”) 
  print(“\t\t\t. . .”) 
  print(“\t\tname_of_program2 \\”) 
  print(“\t\t\tstruct_file_from_program2_1”) 
  print(“\t\t\tstruct_file_from_program3_2”) 
  print(“\t\t\t. . .”) 
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  print(“\t\t. . .”) 
  print(“\n\tTraining files should contain structural elements, either line- or 
comma-delimited”) 
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